explain() method: MongoDB

We’ve seen the working of explain() method briefly in previous video tutorials – in this video tutorial lets dive in to learn more about this useful method, which helps us analyze and optimize our MongoDB commands.

explain-method-mongodb

Related Read:
Create and Insert Documents: MongoDB
index creation: MongoDB

temp: database name
name: collection name

Inserting 1000 Documents

1
2
3
4
5
6
7
8
MongoDB shell version: 2.6.1
connecting to: test
 
> use temp
switched to db temp
 
> for(i = 1; i < = 1000; i++) db.name.insert({a: i, b: i, c: i});
WriteResult({ "nInserted" : 1 })

Here we inserted 1000 documents using for loop.

Basic Cursor

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
> db.name.find({a: 5})
{ "_id" : ObjectId("53dcd070340ac74e061d7215"), "a" : 5, "b" : 5, "c" : 5 }
 
> db.name.find({a: 5}).explain()
{
        "cursor" : "BasicCursor",
        "isMultiKey" : false,
        "n" : 1,
        "nscannedObjects" : 1000,
        "nscanned" : 1000,
        "nscannedObjectsAllPlans" : 1000,
        "nscannedAllPlans" : 1000,
        "scanAndOrder" : false,
        "indexOnly" : false,
        "nYields" : 7,
        "nChunkSkips" : 0,
        "millis" : 1,
        "server" : "Satish-PC:27017",
        "filterSet" : false
}

Here MongoDB server is returning a basic cursor, as we do not have index on field “a”. Also note that, it’s scanning 1000 documents in the “name” collection and scanning 1000 index keys in “system.indexes” collection, where the default key is “_id”.

explain() method: MongoDB


[youtube https://www.youtube.com/watch?v=q59nF4ziW-w]

YouTube Link: https://www.youtube.com/watch?v=q59nF4ziW-w [Watch the Video In Full Screen.]



Creating Index on fields “a” and “b”

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
> db.name.ensureIndex({a: 1, b: 1});
{
        "createdCollectionAutomatically" : false,
        "numIndexesBefore" : 1,
        "numIndexesAfter" : 2,
        "ok" : 1
}
 
> db.name.find({a: 5}).explain()
{
        "cursor" : "BtreeCursor a_1_b_1",
        "isMultiKey" : false,
        "n" : 1,
        "nscannedObjects" : 1,
        "nscanned" : 1,
        "nscannedObjectsAllPlans" : 1,
        "nscannedAllPlans" : 1,
        "scanAndOrder" : false,
        "indexOnly" : false,
        "nYields" : 0,
        "nChunkSkips" : 0,
        "millis" : 0,
        "indexBounds" : {
                "a" : [
                        [
                                5,
                                5
                        ]
                ],
                "b" : [
                        [
                                {
                                        "$minElement" : 1
                                },
                                {
                                        "$maxElement" : 1
                                }
                        ]
                ]
        },
        "server" : "Satish-PC:27017",
        "filterSet" : false
}

Here we create index on key “a” and “b” – it’s called compound key – after which the explain() method shows that MongoDB server is returning a Btree cursor, meaning it’s making use of index key to execute the query/command.

Also not the number of objects scanned in the “name” collection as well as in the “system.indexes” collection.

indexOnly: true

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
> db.name.find({a: 5})
{ "_id" : ObjectId("53dcd070340ac74e061d7215"), "a" : 5, "b" : 5, "c" : 5 }
 
> db.name.find({a: 5}, {a: 1, b: 1, _id: 0})
{ "a" : 5, "b" : 5 }
 
> db.name.find({a: 5}, {a: 1, b: 1, _id: 0}).explain()
{
        "cursor" : "BtreeCursor a_1_b_1",
        "isMultiKey" : false,
        "n" : 1,
        "nscannedObjects" : 0,
        "nscanned" : 1,
        "nscannedObjectsAllPlans" : 0,
        "nscannedAllPlans" : 1,
        "scanAndOrder" : false,
        "indexOnly" : true,
        "nYields" : 0,
        "nChunkSkips" : 0,
        "millis" : 0,
        "indexBounds" : {
                "a" : [
                        [
                                5,
                                5
                        ]
                ],
                "b" : [
                        [
                                {
                                        "$minElement" : 1
                                },
                                {
                                        "$maxElement" : 1
                                }
                        ]
                ]
        },
        "server" : "Satish-PC:27017",
        "filterSet" : false
}

Covered Index or indexOnly
If our command is requesting for values present inside the index, mongo engine will fetch that information from the “system.indexes” collection itself and does not go to the collection where the entire document is present – in our case “name” collection. Since index is on keys “a” and “b” in our case, if we query for “a” and “b” values only, it fetches those values directly from the index information and will not go to “name” collection. Hence the speed of execution of the command is faster, and this type of commands are very efficient in creating optimized web applications.

Note from above explain() result, the number of objects scanned in the “name” collection is 0, and the number of scans made on indexes in only 1.

Index Creation for Production Server: MongoDB

We know the uses of index, how to create indexes, how to delete indexes – now its time to learn the right way of creating index/key in MongoDB for its optimum usage.

background-index-creation-mongodb

temp: database name
stu: collection name

Inserting 10 Million Documents

1
2
3
4
5
use temp
switched to db temp
 
for(i=1; i < = 10000000; i++)
db.no.insert({"student_id": i});

This inserts 10 Million documents inside “stu” collection. It takes atleast a minute or so to complete the insertion – patience is key!

index creation in the foreground

1
2
3
4
5
6
7
> db.stu.ensureIndex({student_id: 1});
{
        "createdCollectionAutomatically" : false,
        "numIndexesBefore" : 1,
        "numIndexesAfter" : 2,
        "ok" : 1
}

Since there are 10 Million documents inside “stu” collection, it takes some time to create index on “student_id” key.

Things to note:
1. By default, index creation in MongoDB takes place in the foreground.
2. It’s faster than background index creation.
3. It blocks other write operation
4. Ideal to use when in development system – as you’re the only one writing to the server(database). Also ideal to use when you’ve replica sets – where you’ll have multiple set of mongod with same data set to operate on, in which case you can have index information on a separate replica set which helps in faster and efficient index creation.

Background Index Creation: MongoDB


[youtube https://www.youtube.com/watch?v=PIyBA3LvVDs]

YouTube Link: https://www.youtube.com/watch?v=PIyBA3LvVDs [Watch the Video In Full Screen.]



index creation in the background

1
2
3
4
5
6
7
> db.stu.ensureIndex({student_id: 1}, {background: true});
{
        "createdCollectionAutomatically" : false,
        "numIndexesBefore" : 1,
        "numIndexesAfter" : 2,
        "ok" : 1
}

Simply pass in the option in second parameter to ensureIndex() method – {background: true}

It takes time to complete the process, as there are 10 Million documents in the collection.

Things to note:
1. It’s slower than foreground index creation method.
2. It does not block any other write operation.
3. Ideal in production server/system. As there’ll be other people who’ll be performing read and write operation on the same database server.
4. Ideal when you’re not making use of replica sets yet.

Remove Duplicate Documents: MongoDB

We learnt how to create unique key/index using {unique: true} option with ensureIndex() method. Now lets see how we can create unique key when there are duplicate entries/documents already present inside the collection.

dropDups-unique-key-index-mongodb

Insert documents

1
2
3
4
5
6
7
8
9
10
11
12
> db.system.indexes.find()
{ "v" : 1, "key" : { "_id" : 1 }, "name" : "_id_", "ns" : "foo.test" }
 
 
> db.test.insert({name: "Satish", age: 27});
WriteResult({ "nInserted" : 1 })
 
> db.test.insert({name: "Kiran", age: 28});
WriteResult({ "nInserted" : 1 })
 
> db.test.insert({name: "Satish", age: 27});
WriteResult({ "nInserted" : 1 })

Here we have 3 documents. First and the last document has same value for “name” and “age” fields.

dropDups() To Remove Duplicate Documents: MongoDB


[youtube https://www.youtube.com/watch?v=aQXdtDWKBiU]

YouTube Link: https://www.youtube.com/watch?v=aQXdtDWKBiU [Watch the Video In Full Screen.]



Creating unique key on field “name”

1
2
3
4
5
6
7
8
9
> db.test.ensureIndex({name: 1}, {unique: true});
{
        "createdCollectionAutomatically" : false,
        "numIndexesBefore" : 1,
        "ok" : 0,
        "errmsg" : "E11000 duplicate key error index: foo.test.$name_1  dup key:
 { : \"Satish\" }",
        "code" : 11000
}

This creates error, as the collection “test” already has duplicate entries/documents.

Create Unique Key by dropping random duplicate entries

1
2
3
4
5
6
7
8
9
10
11
> db.test.ensureIndex({name: 1}, {unique: true, dropDups: true});
{
        "createdCollectionAutomatically" : false,
        "numIndexesBefore" : 1,
        "numIndexesAfter" : 2,
        "ok" : 1
}
 
> db.test.find();
{ "_id" : ObjectId("53d8f1268019dce2ce61eb86"), "name" : "Satish", "age" : 27 }
{ "_id" : ObjectId("53d8f12f8019dce2ce61eb87"), "name" : "Kiran", "age" : 28 }

dropDups() method retains only 1 document randomly and deletes/removes/drops all other duplicate entries/documents permanently.

Note: Since the documents are deleted randomly and can not be restored, you need to be very careful while making use of dropDup() method.

Creating Unique Key/index: MongoDB

We have learnt how to create a key/index so far – today lets learn how to create unique key/index in MongoDB.

creating-unique-key-index-mongodb

Related Read:
ObjectId ( _id ) as Primary Key: MongoDB
index creation: MongoDB

foo: database name
name: collection name

Primary Key in MongoDB: _id

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
> db.name.insert({_id: 1, a: 1});
WriteResult({ "nInserted" : 1 })
 
> db.system.indexes.find()
{ "v" : 1, "key" : { "_id" : 1 }, "name" : "_id_", "ns" : "foo.name" }
 
> db.name.insert({_id: 1, a: 2});
WriteResult({
        "nInserted" : 0,
        "writeError" : {
                "code" : 11000,
                "errmsg" : "insertDocument :: caused by :: 11000 E11000 
                            duplicate key error index: foo.name.$_id_  dup key: { : 1.0 }"
        }
})

Since “_id” is treated as primary key in mongoDB, we can’t insert duplicate values to it. In above case, we are trying to insert value of “_id” as 1 twice – the second time around it threw an error stating the entered value as duplicate.

Related Read:
DBMS Basics: Getting Started Guide
Primary Foreign Unique Keys, AUTO_INCREMENT: MySQL
Primary Key & Foreign Key Implementation: MySQL

Creating Unique Key/index: MongoDB


[youtube https://www.youtube.com/watch?v=QEy1IctH99w]

YouTube Link: https://www.youtube.com/watch?v=QEy1IctH99w [Watch the Video In Full Screen.]



Creating Key/Index

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
> db.name.insert({a: 1});
WriteResult({ "nInserted" : 1 })
 
> db.name.find()
{ "_id" : ObjectId("53d8cadbbbfe6d81d0bcc364"), "a" : 1 }
{ "_id" : 1, "a" : 1 }
 
> db.name.ensureIndex({a: 1});
{
        "createdCollectionAutomatically" : false,
        "numIndexesBefore" : 1,
        "numIndexesAfter" : 2,
        "ok" : 1
}
> db.system.indexes.find()
{ "v" : 1, "key" : { "_id" : 1 }, "name" : "_id_", "ns" : "foo.name" }
{ "v" : 1, "key" : { "a" : 1 }, "name" : "a_1", "ns" : "foo.name" }

Here we create index on field “a”.

Inserting duplicate values into key field

1
2
3
4
5
6
7
> db.name.insert({a: 1});
WriteResult({ "nInserted" : 1 })
 
> db.name.find()
{ "_id" : ObjectId("53d8cadbbbfe6d81d0bcc364"), "a" : 1 }
{ "_id" : 1, "a" : 1 }
{ "_id" : ObjectId("53d8cb4dbbfe6d81d0bcc365"), "a" : 1 }

insert operation simply inserts the duplicate value to field “a” even though its made as a key/index.

Removing documents and Key/Index on field “a”

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
> db.name.find()
{ "_id" : ObjectId("53d8cadbbbfe6d81d0bcc364"), "a" : 1 }
{ "_id" : 1, "a" : 1 }
{ "_id" : ObjectId("53d8cb4dbbfe6d81d0bcc365"), "a" : 1 }
 
> db.name.remove({a: 1});
WriteResult({ "nRemoved" : 3 })
 
> db.name.find()
 
> db.name.dropIndex({a: 1});
{ "nIndexesWas" : 2, "ok" : 1 }
 
> db.system.indexes.find()
{ "v" : 1, "key" : { "_id" : 1 }, "name" : "_id_", "ns" : "foo.name" }

Before implementing unique key on field “a” we need to first remove the duplicate entries present inside our collection orelse it’ll through errors. Here we also remove the index/key on “a”, so that we can create unique key/index on “a”.

Creating Unique key/index on field “a”

1
2
3
4
5
6
7
> db.name.ensureIndex({a: 1}, {unique: true});
{
        "createdCollectionAutomatically" : false,
        "numIndexesBefore" : 1,
        "numIndexesAfter" : 2,
        "ok" : 1
}

To create unique key/index, we need to make use of ensureIndex() method – first parameter being the field name to be made as unique key along with it’s value 1 or -1. 1 signifies ascending order, -1 signifies descending order. The second parameter {unique: true}, specifies that the key/index must be unique key/index, like that of “_id”.

Duplicate key error on our Unique Key!

1
2
3
4
5
6
7
8
9
10
11
12
> db.name.find()
{ "_id" : ObjectId("53d8cb85bbfe6d81d0bcc366"), "a" : 1 }
 
> db.name.insert({a: 1});
WriteResult({
        "nInserted" : 0,
        "writeError" : {
                "code" : 11000,
                "errmsg" : "insertDocument :: caused by :: 11000 E11000 
                            duplicate key error index: foo.name.$a_1  dup key: { : 1.0 }"
        }
})

Now if we try to insert duplicate values into field “a” it throws duplicate key error.

Multi-key Indexes and Arrays: MongoDB

We have learnt the basics of multi-key indexes in MongoDB. Lets look at an example to demonstrate the multi-key indexing on arrays.

arrays-multi-key-index-mongodb

foo: database name
name: collection name

Insert a document

1
2
3
4
5
6
7
8
MongoDB shell version: 2.6.1
connecting to: test
 
> use foo
switched to db foo
 
> db.name.insert({a: 1, b: 2, c: 3});
WriteResult({ "nInserted" : 1 })

Here we insert {a: 1, b: 2, c: 3} into “name” collection.

Multi-key Indexes and Arrays: MongoDB


[youtube https://www.youtube.com/watch?v=VGHSmjVmnzs]

YouTube Link: https://www.youtube.com/watch?v=VGHSmjVmnzs [Watch the Video In Full Screen.]



Basic Cursor

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
> db.name.find({a: 1, b: 2})
{ "_id" : ObjectId("53d8982b79142c385cddc607"), "a" : 1, "b" : 2, "c" : 3 }
 
> db.name.find({a: 1, b: 2}).explain()
{
        "cursor" : "BasicCursor",
        "isMultiKey" : false,
        "n" : 1,
        "nscannedObjects" : 1,
        "nscanned" : 1,
        "nscannedObjectsAllPlans" : 1,
        "nscannedAllPlans" : 1,
        "scanAndOrder" : false,
        "indexOnly" : false,
        "nYields" : 0,
        "nChunkSkips" : 0,
        "millis" : 0,
        "server" : "Satish-PC:27017",
        "filterSet" : false
}

We find() the document using fields “a” and “b” and the query/command returns a basic cursor, as we do not have indexing on them.

Related Read: index creation: MongoDB

Lets create index on a and b

1
2
3
4
5
6
7
> db.name.ensureIndex({a: 1, b: 1});
{
        "createdCollectionAutomatically" : false,
        "numIndexesBefore" : 1,
        "numIndexesAfter" : 2,
        "ok" : 1
}

Previous there was only 1 index i.e., on “_id” Now there are 2 indexes – “_id” and “{a: 1, b: 1}”

Btree Cursor with multi-key as false

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
> db.name.find({a: 1, b: 2}).explain()
{
        "cursor" : "BtreeCursor a_1_b_1",
        "isMultiKey" : false,
        "n" : 1,
        "nscannedObjects" : 1,
        "nscanned" : 1,
        "nscannedObjectsAllPlans" : 1,
        "nscannedAllPlans" : 1,
        "scanAndOrder" : false,
        "indexOnly" : false,
        "nYields" : 0,
        "nChunkSkips" : 0,
        "millis" : 0,
        "indexBounds" : {
                "a" : [
                        [
                                1,
                                1
                        ]
                ],
                "b" : [
                        [
                                2,
                                2
                        ]
                ]
        },
        "server" : "Satish-PC:27017",
        "filterSet" : false
}

After creating the index on “a” and “b”, chain explain() method on the same command, and it shows you that, now it returns a Btree Cursor.

Lets insert another document

1
2
> db.name.insert({a: [0, 1, 2], b: 2, c: 3});
WriteResult({ "nInserted" : 1 })

Lets insert an array as value to field “a” and scalar values to “b” and “c”.

Btree Cursor with Multi-key true

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
> db.name.find({a: 1, b: 2})
{ "_id" : ObjectId("53d8982b79142c385cddc607"), 
  "a" : 1, "b" : 2, "c" : 3 }
{ "_id" : ObjectId("53d8986f79142c385cddc608"), 
  "a" : [ 0, 1, 2 ], "b" : 2, "c": 3 }
 
> db.name.find({a: 1, b: 2}).explain()
{
        "cursor" : "BtreeCursor a_1_b_1",
        "isMultiKey" : true,
        "n" : 2,
        "nscannedObjects" : 2,
        "nscanned" : 2,
        "nscannedObjectsAllPlans" : 2,
        "nscannedAllPlans" : 2,
        "scanAndOrder" : false,
        "indexOnly" : false,
        "nYields" : 0,
        "nChunkSkips" : 0,
        "millis" : 0,
        "indexBounds" : {
                "a" : [
                        [
                                1,
                                1
                        ]
                ],
                "b" : [
                        [
                                2,
                                2
                        ]
                ]
        },
        "server" : "Satish-PC:27017",
        "filterSet" : false
}

Now append explain() method to our command, it shows us that it returns a Btree Cursor and multi-key as true. MongoDB engine need to match every element of the array present in field “a” with the scalar value of field “b”. Hence it uses Multi-Key indexing.

Multi-Key Condition in MongoDB

1
2
3
4
5
6
7
8
9
> db.name.insert({a: [0, 1, 2], b: [3, 4], c: 3});
WriteResult({
        "nInserted" : 0,
        "writeError" : {
                "code" : 10088,
                "errmsg" : "insertDocument :: caused by :: 10088 cannot 
                            index parallel arrays [b] [a]"
        }
})

It’s difficult to match every combination of the array elements present inside both “a” and “b” fields. If both keys/indexes has its value as an array, then it gets complicated. Thus, mongoDB doesn’t allow both keys to be arrays. Either one of them must be a scalar value.