IONIC APP – Open External Links In Mobile Browser

Ionic apps are developed with angular code, so people start using ng-href to point to URLs which has {{}} variables whose value will be dynamically loaded. With ng-href IONIC treats the links like internal links and hence opens them within the application itself. To solve this, we make use of onclick and window.open() methods.

Note: Am using Windows 7 to illustrate this tutorial.

ionic

In this tutorial I’ll show you the exact code you need to do this effectively: To open the external URL in mobiles browser.

Step 1: You need node.js installed on your computer.
Step 2: Install cordova and ionic

npm install ionic -g
npm install cordova -g

Step 3: Install inappbrowser plugin

cordova plugin add https://git-wip-us.apache.org/repos/asf/cordova-plugin-inappbrowser.git

OR

cordova plugin add org.apache.cordova.inappbrowser

Step 4: Insert the code in your view (html files)

<a class="button button-assertive" 
   ng-href="http:// url .com/{{id}}/discount"
   onclick='window.open(this.href, "_system", "location=yes"); return false;'>
</a>

This way, the variables in the ng-href interpolates and then is being inserted as first parameter to window.open() method.

IONIC APP – Open External Links In Mobile Browser


[youtube https://www.youtube.com/watch?v=tqbmsOn_n1E]

YouTube Link: https://www.youtube.com/watch?v=tqbmsOn_n1E [Watch the Video In Full Screen.]



Loads in the system browser: window.open(‘http://example.com’, ‘_system’);
Loads in the InAppBrowser: window.open(‘http://example.com’, ‘_blank’);
Loads in the InAppBrowser with no location bar: window.open(‘http://example.com’, ‘_blank’, ‘location=no’);
Loads in the Cordova web view: window.open(‘http://example.com’, ‘_self’);

Download Attribute: HTML5

In this video tutorial we’ll show you how we can add download attribute and make the UX(User Experience) little better!

Related Read: HTML5 and CSS3 Video Tutorial List

We’ve seen so many times that a PDF file available for download opens up in the browser once the link is clicked. Same way the rar files, zip files, image files etc. We could add download attribute and fix this simple issue.

HTML5: Download Attribute with Value

1
2
3
 <a href="Picture1.jpg" download="book.jpg">
    Download Book Cover
 </a>

Once we add download attribute to the anchor tag, once someone clicks on the link, the linked resource starts to download, instead of opening in the browser.

The value, if present, to download attribute will be used to replace the original name of the resource file linked in the anchor tag.

Download Attribute: HTML5


[youtube https://www.youtube.com/watch?v=Wg6bMQ9leMQ]

YouTube Link: https://www.youtube.com/watch?v=Wg6bMQ9leMQ [Watch the Video In Full Screen.]



Full Free Code: HTML5 Download Attribute with Value

1
2
3
4
5
6
7
8
9
10
11
12
13
< !doctype html>
<html>
<head>
<title>Download Attribute</title>
</head>
<body>
 
 <a href="Picture1.jpg" download="book.jpg">
    Download Book Cover
 </a>
 
</body>
</html>

Make sure you have the doctype of html5(First line in above code).

explain() method: MongoDB

We’ve seen the working of explain() method briefly in previous video tutorials – in this video tutorial lets dive in to learn more about this useful method, which helps us analyze and optimize our MongoDB commands.

explain-method-mongodb

Related Read:
Create and Insert Documents: MongoDB
index creation: MongoDB

temp: database name
name: collection name

Inserting 1000 Documents

1
2
3
4
5
6
7
8
MongoDB shell version: 2.6.1
connecting to: test
 
> use temp
switched to db temp
 
> for(i = 1; i < = 1000; i++) db.name.insert({a: i, b: i, c: i});
WriteResult({ "nInserted" : 1 })

Here we inserted 1000 documents using for loop.

Basic Cursor

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
> db.name.find({a: 5})
{ "_id" : ObjectId("53dcd070340ac74e061d7215"), "a" : 5, "b" : 5, "c" : 5 }
 
> db.name.find({a: 5}).explain()
{
        "cursor" : "BasicCursor",
        "isMultiKey" : false,
        "n" : 1,
        "nscannedObjects" : 1000,
        "nscanned" : 1000,
        "nscannedObjectsAllPlans" : 1000,
        "nscannedAllPlans" : 1000,
        "scanAndOrder" : false,
        "indexOnly" : false,
        "nYields" : 7,
        "nChunkSkips" : 0,
        "millis" : 1,
        "server" : "Satish-PC:27017",
        "filterSet" : false
}

Here MongoDB server is returning a basic cursor, as we do not have index on field “a”. Also note that, it’s scanning 1000 documents in the “name” collection and scanning 1000 index keys in “system.indexes” collection, where the default key is “_id”.

explain() method: MongoDB


[youtube https://www.youtube.com/watch?v=q59nF4ziW-w]

YouTube Link: https://www.youtube.com/watch?v=q59nF4ziW-w [Watch the Video In Full Screen.]



Creating Index on fields “a” and “b”

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
> db.name.ensureIndex({a: 1, b: 1});
{
        "createdCollectionAutomatically" : false,
        "numIndexesBefore" : 1,
        "numIndexesAfter" : 2,
        "ok" : 1
}
 
> db.name.find({a: 5}).explain()
{
        "cursor" : "BtreeCursor a_1_b_1",
        "isMultiKey" : false,
        "n" : 1,
        "nscannedObjects" : 1,
        "nscanned" : 1,
        "nscannedObjectsAllPlans" : 1,
        "nscannedAllPlans" : 1,
        "scanAndOrder" : false,
        "indexOnly" : false,
        "nYields" : 0,
        "nChunkSkips" : 0,
        "millis" : 0,
        "indexBounds" : {
                "a" : [
                        [
                                5,
                                5
                        ]
                ],
                "b" : [
                        [
                                {
                                        "$minElement" : 1
                                },
                                {
                                        "$maxElement" : 1
                                }
                        ]
                ]
        },
        "server" : "Satish-PC:27017",
        "filterSet" : false
}

Here we create index on key “a” and “b” – it’s called compound key – after which the explain() method shows that MongoDB server is returning a Btree cursor, meaning it’s making use of index key to execute the query/command.

Also not the number of objects scanned in the “name” collection as well as in the “system.indexes” collection.

indexOnly: true

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
> db.name.find({a: 5})
{ "_id" : ObjectId("53dcd070340ac74e061d7215"), "a" : 5, "b" : 5, "c" : 5 }
 
> db.name.find({a: 5}, {a: 1, b: 1, _id: 0})
{ "a" : 5, "b" : 5 }
 
> db.name.find({a: 5}, {a: 1, b: 1, _id: 0}).explain()
{
        "cursor" : "BtreeCursor a_1_b_1",
        "isMultiKey" : false,
        "n" : 1,
        "nscannedObjects" : 0,
        "nscanned" : 1,
        "nscannedObjectsAllPlans" : 0,
        "nscannedAllPlans" : 1,
        "scanAndOrder" : false,
        "indexOnly" : true,
        "nYields" : 0,
        "nChunkSkips" : 0,
        "millis" : 0,
        "indexBounds" : {
                "a" : [
                        [
                                5,
                                5
                        ]
                ],
                "b" : [
                        [
                                {
                                        "$minElement" : 1
                                },
                                {
                                        "$maxElement" : 1
                                }
                        ]
                ]
        },
        "server" : "Satish-PC:27017",
        "filterSet" : false
}

Covered Index or indexOnly
If our command is requesting for values present inside the index, mongo engine will fetch that information from the “system.indexes” collection itself and does not go to the collection where the entire document is present – in our case “name” collection. Since index is on keys “a” and “b” in our case, if we query for “a” and “b” values only, it fetches those values directly from the index information and will not go to “name” collection. Hence the speed of execution of the command is faster, and this type of commands are very efficient in creating optimized web applications.

Note from above explain() result, the number of objects scanned in the “name” collection is 0, and the number of scans made on indexes in only 1.

Index Creation for Production Server: MongoDB

We know the uses of index, how to create indexes, how to delete indexes – now its time to learn the right way of creating index/key in MongoDB for its optimum usage.

background-index-creation-mongodb

temp: database name
stu: collection name

Inserting 10 Million Documents

1
2
3
4
5
use temp
switched to db temp
 
for(i=1; i < = 10000000; i++)
db.no.insert({"student_id": i});

This inserts 10 Million documents inside “stu” collection. It takes atleast a minute or so to complete the insertion – patience is key!

index creation in the foreground

1
2
3
4
5
6
7
> db.stu.ensureIndex({student_id: 1});
{
        "createdCollectionAutomatically" : false,
        "numIndexesBefore" : 1,
        "numIndexesAfter" : 2,
        "ok" : 1
}

Since there are 10 Million documents inside “stu” collection, it takes some time to create index on “student_id” key.

Things to note:
1. By default, index creation in MongoDB takes place in the foreground.
2. It’s faster than background index creation.
3. It blocks other write operation
4. Ideal to use when in development system – as you’re the only one writing to the server(database). Also ideal to use when you’ve replica sets – where you’ll have multiple set of mongod with same data set to operate on, in which case you can have index information on a separate replica set which helps in faster and efficient index creation.

Background Index Creation: MongoDB


[youtube https://www.youtube.com/watch?v=PIyBA3LvVDs]

YouTube Link: https://www.youtube.com/watch?v=PIyBA3LvVDs [Watch the Video In Full Screen.]



index creation in the background

1
2
3
4
5
6
7
> db.stu.ensureIndex({student_id: 1}, {background: true});
{
        "createdCollectionAutomatically" : false,
        "numIndexesBefore" : 1,
        "numIndexesAfter" : 2,
        "ok" : 1
}

Simply pass in the option in second parameter to ensureIndex() method – {background: true}

It takes time to complete the process, as there are 10 Million documents in the collection.

Things to note:
1. It’s slower than foreground index creation method.
2. It does not block any other write operation.
3. Ideal in production server/system. As there’ll be other people who’ll be performing read and write operation on the same database server.
4. Ideal when you’re not making use of replica sets yet.

Sparse Index: MongoDB

All sparse indexes are unique index, but not all unique indexes are sparse! There are situations where we want to create unique index on key/field which is not present in all documents. Wherever the key is not present, it’s value will be treated as NULL. If more than 1 document has NULL value to the key we want to make as unique, then it violates unique key rule. In such situations we can make use of Sparse index and create unique key on only those documents which has the key in it.

sparse-index-unique-key-mongodb

example: database name
company: collection name

Insert documents

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
MongoDB shell version: 2.6.1
connecting to: test
> use example
switched to db example
 
> db.company.insert({name: "Apple", product: "iPhone"});
WriteResult({ "nInserted" : 1 })
 
> db.company.insert({name: "Motorola", product: "Smart Watch"});
WriteResult({ "nInserted" : 1 })
 
> db.company.insert({name: "Technotip"});
WriteResult({ "nInserted" : 1 })
 
> db.company.insert({name: "Google"});
WriteResult({ "nInserted" : 1 })
 
 
> db.company.find().pretty()
{
        "_id" : ObjectId("53d9f5125d1942042b4e092b"),
        "name" : "Apple",
        "product" : "iPhone"
}
{
        "_id" : ObjectId("53d9f52d5d1942042b4e092c"),
        "name" : "Motorola",
        "product" : "Smart Watch"
}
{ "_id" : ObjectId("53d9f5385d1942042b4e092d"), "name" : "Technotip" }
{ "_id" : ObjectId("53d9f53f5d1942042b4e092e"), "name" : "Google" }

We have 4 documents in “company” collection. First 2 documents has “name” and “product” keys. Last 2 documents has only “name” key.

Sparse Index – Unique Key: MongoDB


[youtube https://www.youtube.com/watch?v=6pxI5j6TZRU]

YouTube Link: https://www.youtube.com/watch?v=6pxI5j6TZRU [Watch the Video In Full Screen.]



Duplicate key error

1
2
3
4
5
6
7
8
9
> db.company.ensureIndex({product: 1}, {unique: true});
{
        "createdCollectionAutomatically" : false,
        "numIndexesBefore" : 1,
        "ok" : 0,
        "errmsg" : "E11000 duplicate key error index: example.company.$product_1
  dup key: { : null }",
        "code" : 11000
}

Since last 2 documents do not have “product” key, its value will be treated as “NULL”. Since both these documents have value of “product” as “NULL”, trying to create unique key on “product” throws duplicate key error.

Sparse Index

1
2
3
4
5
6
7
> db.company.ensureIndex({product: 1}, {unique: true, sparse: true});
{
        "createdCollectionAutomatically" : false,
        "numIndexesBefore" : 1,
        "numIndexesAfter" : 2,
        "ok" : 1
}

This creates a sparse index on “product” key/field.

system.indexes collection

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
> db.system.indexes.find().pretty()
{
        "v" : 1,
        "key" : {
                "_id" : 1
        },
        "name" : "_id_",
        "ns" : "example.company"
}
{
        "v" : 1,
        "unique" : true,
        "key" : {
                "product" : 1
        },
        "name" : "product_1",
        "ns" : "example.company",
        "sparse" : true
}

The “system.indexes” collection shows that the key “product” is a unique key and is a sparse index.

sort() method

1
2
3
4
5
6
7
8
9
10
11
12
13
> db.company.find().sort({product: 1}).pretty();
{ "_id" : ObjectId("53d9f5385d1942042b4e092d"), "name" : "Technotip" }
{ "_id" : ObjectId("53d9f53f5d1942042b4e092e"), "name" : "Google" }
{
        "_id" : ObjectId("53d9f52d5d1942042b4e092c"),
        "name" : "Motorola",
        "product" : "Smart Watch"
}
{
        "_id" : ObjectId("53d9f5125d1942042b4e092b"),
        "name" : "Apple",
        "product" : "iPhone"
}

This command sorts all the documents in lexicographical order. The output includes all the documents. Those documents which do not have “product” key in them are listed first.

Basic Cursor

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
> db.company.find().sort({product: 1}).explain()
{
        "cursor" : "BasicCursor",
        "isMultiKey" : false,
        "n" : 4,
        "nscannedObjects" : 4,
        "nscanned" : 4,
        "nscannedObjectsAllPlans" : 4,
        "nscannedAllPlans" : 4,
        "scanAndOrder" : true,
        "indexOnly" : false,
        "nYields" : 0,
        "nChunkSkips" : 0,
        "millis" : 0,
        "server" : "Satish-PC:27017",
        "filterSet" : false
}

Since the command is even listing/sorting the documents which do not have “product” key in them, it’s simply making use of Basic Cursor – which do not help in optimizing the command/query performance.

hint() method

1
2
3
4
5
6
7
8
9
10
11
> db.company.find().sort({product: 1}).hint({product: 1}).pretty();
{
        "_id" : ObjectId("53d9f52d5d1942042b4e092c"),
        "name" : "Motorola",
        "product" : "Smart Watch"
}
{
        "_id" : ObjectId("53d9f5125d1942042b4e092b"),
        "name" : "Apple",
        "product" : "iPhone"
}

hint() method tells the mongoDB server to operate only on the sparse key.. hence only retrieving and operating on the documents which has the sparse key in them.

Btree Cursor

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
> db.company.find().sort({product: 1}).hint({product: 1}).explain()
{
        "cursor" : "BtreeCursor product_1",
        "isMultiKey" : false,
        "n" : 2,
        "nscannedObjects" : 2,
        "nscanned" : 2,
        "nscannedObjectsAllPlans" : 2,
        "nscannedAllPlans" : 2,
        "scanAndOrder" : false,
        "indexOnly" : false,
        "nYields" : 0,
        "nChunkSkips" : 0,
        "millis" : 0,
        "indexBounds" : {
                "product" : [
                        [
                                {
                                        "$minElement" : 1
                                },
                                {
                                        "$maxElement" : 1
                                }
                        ]
                ]
        },
        "server" : "Satish-PC:27017",
        "filterSet" : false
}

After using hint() method, mongoDB server is only looking for documents which has the sparse index key in them, so it can directly look for the sparse index key inside “system.indexes” collection, hence it’s using Btree Cursor – and is efficient.